NMDA channel behavior depends on agonist affinity.
نویسندگان
چکیده
We have compared the kinetic properties of NMDA receptor channels activated by exogenous agonists with those activated synaptically. Short (4 msec) applications of L-glutamate to outside-out patches from hippocampal neurons evoked currents that decayed with a double exponential time course that was controlled by both the unbinding rate of agonist and receptor desensitization. Lower-affinity agonists evoked NMDA receptor-activated currents that had faster rates of decay and recovered from desensitization more quickly, consistent with the idea that agonists which dissociate faster allow the receptor to reach a desensitized state less often. Both synaptic and patch responses could be well fitted with a simple kinetic model comprised of two independent but identical binding sites, one open state, one closed state, and one desensitized state, all doubly liganded. Provided that the agonist has a slow unbinding rate relative to the rates into the open and desensitized states (e.g., L-glutamate), this model predicts a response with two decay phases and can thus account for the synaptic response. Since the unbinding rate is the critical determinant of the time course, different affinity transmitters would affect such properties as excitatory postsynaptic current (EPSC) duration. Of the known endogenous excitatory amino acids, only L-glutamate has an affinity for the NMDA receptor consistent with the time course of the EPSC recorded between hippocampal neurons in culture.
منابع مشابه
Glutamate but not glycine agonist affinity for NMDA receptors is influenced by small cations.
NMDA receptor currents desensitize in an agonist-dependent manner when either the glutamate or glycine agonist is subsaturating. This may result from a conformational change in the NMDA receptor protein that lowers glutamate and glycine binding site affinity induced by co-agonist binding, channel opening, or ion permeation. We have used whole-cell voltage clamp of cultured hippocampal neurons w...
متن کاملTrapping channel block of NMDA-activated responses by amantadine and memantine.
We investigated the mechanisms by which the antiparkinsonian and neuroprotective agents amantadine and memantine inhibit responses to N-methyl-D-aspartic acid (NMDA). Whole cell recordings were performed using cultured rat cortical neurons or Chinese hamster ovary (CHO) cells expressing NMDA receptors. Both amantadine and memantine blocked NMDA-activated channels by binding to a site at which t...
متن کاملMicroinjection of NMDA Receptor Agents into the Central Nucleus of the Amygdale Alters Water Intake in Rats
Objective(s) The central nucleus of the amygdala (CeA) is a forebrain structure which is important in regulation of ingestive behavior and there is direct and circumstantial evidence to indicate that some circuits involved with feeding behavior include glutamatergic elements. The present study examined whether administration of NMA (N-Methyl-DL-aspartic acid) or MK801 into the CeA altered wate...
متن کاملKinetics of NMDA channel opening.
The period required for NMDA channels to open for the first time after agonist binding (the first latency) was estimated in outside-out patch recordings from rat hippocampal neurons using fast-application techniques and the open channel blocker MK-801. In the presence of MK-801, brief applications of L-glutamate or the low-affinity agonist L-cysteate resulted in a similar amount of block despit...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1992